A Geometria do táxi, considerada por Hermann Minkowski no século XIX, é uma forma de geometria em que a usual métrica da geometria euclidiana é substituída por uma nova métrica em que a distância entre dois pontos é a soma das diferenças absolutas de suas coordenadas. A métrica do táxi é também conhecida como distância L1, ou distância de Manhattan, com variações correspondentes no nome da geometria. O último nome faz alusão ao formato quadriculado da maior parte das ruas na ilha de Manhattan. Tal configuração faz com que a menor distância a ser percorrida por um carro que vai de um ponto a outro na cidade tenha como valor aquele número fornecido pela métrica L1.
A taxi-distância entre dois pontos em um espaço euclidiano com sistema de coordenadas cartesianas fixado é a soma dos comprimentos das projeções do segmento de reta que liga os pontos sobre os eixos coordenados. Por exemplo, no plano, a taxi-distancia entre o ponto P1 com coordenadas (x1, y1) e o ponto P2 em (x2, y2) é |x1 - x2| + |y1 - y2|.
Sem comentários:
Enviar um comentário